Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 809
1.
Polymers (Basel) ; 16(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732754

In recent years in the field of traditional materials, traditional polyaniline has faced a number of scientific problems such as an irregular morphology, high difficulty in crystallization, and difficulty in forming an ordered structure compared to the corresponding inorganic materials. In response to these urgent issues, this study determines how to prepare a highly ordered structure in polyaniline formed at the gas-liquid interface. By dynamically arranging aniline monomers into a highly ordered structure with sodium dodecyl benzene sulfonate (SDBS) surfactant, aniline polymerization is initiated at the gas-liquid interface, resulting in two-dimensional polyaniline crystal sheets with a highly ordered structure. By elucidating the microstructure, crystallization process, and molecular structure of the two-dimensional polyaniline crystal sheets, the practical application of polyaniline as an encryption label in the field of electrochromism has been further expanded, thus making polyaniline widely used in the field of information encryption. Therefore, the synthesis of flaky polyaniline crystal sheets has a role in scientific research and practical application, which will arouse the interest and exploration of researchers.

2.
ACS Omega ; 9(17): 19043-19050, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38708255

There have been few studies on the role of nanofluids in oil displacement and injection parameters, despite their significant impact on the oil displacement effect. To enhance oil recovery in an ultralow-permeability reservoir, the nanosized oil-displacement agent with nano-SiO2 modified by a silane coupling agent as a main component was selected for the first time in the Changqing oilfield. To assess the performance of the nanofluid, various factors such as particle size, contact angle, interfacial tension, and emulsion stability were taken into consideration. The oil displacement effect of nanofluids was evaluated by a microscopic model and ultralow-permeability core displacement experiment, and its optimal injection parameters were determined. The average particle size of the nano-oil displacement agent is 22-30 nm. It can change the wetting condition of the rock from oil-wet to water-wet and reduce the oil-water interfacial tension. Even at 80 °C, the emulsion formed by the agent remained stable. The oil displacement experiment shows that the nano-oil displacement agent whose injection pressure increases can displace the residual oil trapped in small pores that cannot be affected by conventional water flooding. The injection mode of "nanoflooding agent drive + water drive + nanoflooding agent drive", injection rate of 0.1 mL/min, injection concentration of 0.5%, and injection volume of 0.5 PV (0.25 PV per segment), which can effectively guide the injection of the oil displacement agent, achieve the best oil displacement effect.

3.
ACS Sens ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38710540

Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO2 films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO2 films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm2 V-1 s-1. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO2. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO2 films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.

4.
BMC Gastroenterol ; 24(1): 153, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702642

BACKGROUND: Liver diseases were significant source of early readmission burden. This study aimed to evaluate the 30-day unplanned readmission rates, causes of readmissions, readmission costs, and predictors of readmission in patients with acute liver failure (ALF). METHODS: Patients admitted for ALF from 2019 National Readmission Database were enrolled. Weighted multivariable logistic regression models were applied and based on Directed Acyclic Graphs. Incidence, causes, cost, and predictors of 30-day unplanned readmissions were identified. RESULTS: A total of 3,281 patients with ALF were enrolled, of whom 600 (18.3%) were readmitted within 30 days. The mean time from discharge to early readmission was 12.6 days. The average hospital cost and charge of readmission were $19,629 and $86,228, respectively. The readmissions were mainly due to liver-related events (26.6%), followed by infection (20.9%). The predictive factors independently associated with readmissions were age, male sex (OR 1.227, 95% CI 1.023-1.472; P = 0.028), renal failure (OR 1.401, 95% CI 1.139-1.723; P = 0.001), diabetes with chronic complications (OR 1.327, 95% CI 1.053-1.672; P = 0.017), complicated hypertension (OR 1.436, 95% CI 1.111-1.857; P = 0.006), peritoneal drainage (OR 1.600, 95% CI 1.092-2.345; P = 0.016), etc. CONCLUSIONS: Patients with ALF are at relatively high risk of early readmission, which imposes a heavy medical and economic burden on society. We need to increase the emphasis placed on early readmission of patients with ALF and establish clinical strategies for their management.


Databases, Factual , Liver Failure, Acute , Patient Readmission , Humans , Patient Readmission/statistics & numerical data , Male , Female , Middle Aged , Liver Failure, Acute/economics , Liver Failure, Acute/therapy , Risk Factors , Adult , Aged , Hospital Costs/statistics & numerical data , Sex Factors , Time Factors , Logistic Models , Age Factors , Incidence
5.
Diabetes Metab Res Rev ; 40(4): e3812, 2024 May.
Article En | MEDLINE | ID: mdl-38738481

AIMS: To evaluate the effectiveness of optical coherence tomography angiography (OCTA) in detecting early intraocular microvascular changes in diabetic patients. MATERIALS AND METHODS: A systematic study search was performed on PubMed, Medline, Embase, and the Cochrane Library, ranging from January 2012 to March 2023. Controlled studies compared diabetes mellitus (DM) patients with non-diabetic retinopathy (NDR) or patients with mild non-proliferative diabetic retinopathy (mild NPDR) to healthy people. These studies included parameters of OCTA such as foveal avascular zone (FAZ), vessel density of superficial capillary plexus (VDscp), vessel density of deep capillary plexus (VDdcp), and peripapillary VD. The relevant effect model was used according to the heterogeneity, and the mean difference and 95% confidence intervals were calculated. RESULTS: A total of 18 studies with 2101 eyes were eventually included in this meta-analysis. Our results demonstrated that early alterations of VDscp, VDdcp, and peripapillary VD in NDR patients had a significant difference compared with healthy people by OCTA (VDscp: WMD = -1.34, 95% CI: -1.99 to -0.68, P < 0.0001. VDdcp: WMD = -2.00, 95% CI: -2.95 to -1.04, P < 0.0001. Peripapillary VD: WMD = -1.07, 95% CI: -1.70 to -0.43, P = 0.0010). However, there was no statistically significant difference in total FAZ between them (WMD = -0.00, 95% CI: -0.02-0.01, P = 0.84). In addition, for patients with mild NPDR, OCTA could illustrate prominent changes in VDscp, VDdcp, and total FAZ compared with healthy people (VDscp: WMD = -6.11, 95% CI: -9.90 to -2.32, P = 0.002. VDdcp: WMD = -4.26, 95% CI: -5.95 to -2.57, P < 0.00001. FAZ: WMD = 0.06, 95% CI: 0.01-0.11, P = 0.03). CONCLUSIONS: In diabetic patients with or without retinopathy, the parameters of OCTA such as VDscp, VDdcp, and peripapillary vessel density were demonstrated as potential biomarkers in monitoring the early alterations of retinal microangiopathy, while total FAZ may have no significant changes in diabetic patients without retinopathy.


Diabetic Retinopathy , Retinal Vessels , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Diabetic Retinopathy/diagnostic imaging , Diabetic Retinopathy/etiology , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Fluorescein Angiography/methods , Microvessels/diagnostic imaging , Microvessels/pathology , Diabetes Mellitus/diagnostic imaging , Prognosis
6.
J Org Chem ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38738957

A visible-light-enabled photoredox radical cascade cyclization of 2-vinyl benzimidazole derivatives is developed. This chemistry is applicable to a wide range of N-aroyl 2-vinyl benzimidazoles as acceptors, and halo compounds, including alkyl halides, acyl chlorides and sulfonyl chlorides, as radical precursors. The Langlois reagent also serves as an effective partner in this photocatalytic oxidative cascade process. This protocol provides a robust alternative for rendering highly functionalized benzo[4,5]imidazo[1,2-b]isoquinolin-11(6H)-ones.

7.
J Hazard Mater ; 471: 134368, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38657512

The co-pyrolysis of oily sludge (OS) and municipal solid waste incineration fly ash (IFA) is a promising strategy for sustainable waste management. This study delves into the distinct catalytic roles of individual IFA components during co-pyrolysis and assesses their impact on the inherent Fe species in OS, highlighting their contributions to overall catalytic activity. Notably, in comparison to IFA, CaCl2 and KCl significantly enhance pyrolysis oil upcycling, while IFA components collectively exhibit a positive catalytic effect on pyrolysis gas and coke production. Ca(OH)2 notably boosts H2 yield by 137.16 %. Alkali chlorides facilitate gaseous hydrocarbon formation and convert oxygen-containing compounds to CO and CO2 which are subsequently consumed and absorbed by CaO and Ca(OH)2. CaCl2 and KCl promote heavy compound decomposition and alkane aromatization, reducing coke formation and increasing light aromatic production. Conversely, NaCl increases alkane proportions. However, CaSO4 and CaCO3 hinder catalytic reactions, promoting carbon conversion to coke. Importantly, IFA compounds aid the dispersion of inherent Fe-based species from OS on char surface, enhancing in-situ catalytic pyrolysis. Additionally, the augmented H2 production accelerates the reduction of Fe-based species. The findings expand waste utilization possibilities and provide insights for co-processing solid wastes.

8.
Small ; : e2402159, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678535

The fabrication of perovskite single crystal-based optoelectronics with improved performance is largely hindered by limited processing techniques. Particularly, the local halide composition manipulation, which dominates the bandgap and thus the formation of heterostructures and emission of multiple-wavelength light, is realized via prevalent liquid- or gas-phase anion exchange with the utilization of lithography, while the monocrystalline nature is sacrificed due to polycrystalline transition in exchange with massive defects emerging, impeding carrier separation and transportation. Thus, a damage-free and lithography-free solid-state anion exchange strategy, aiming at in situ halide manipulation in perovskite monocrystalline film, is developed. Typically, CsPbCl3 working as medium to deliver halide is van der Waals (vdW) assembled to specific spots of CsPbBr3, followed by the removal of CsPbCl3 after anion exchange, with the halide composition in contact area modulated and monocrystalline nature of CsPbBr3 preserved. CsPbBr3-CsPbBrxCl3-x monocrystalline heterostructure has been achieved without lithography. Device based on the heterostructure shows apparent rectification behavior and improved photo-response rate. Heterostructure arrays can also be constructed with customized medium crystal. Furthermore, the halide composition can be accurately tuned to enable full coverage of visible spectra. The solid-state exchange enriches the toolbox for processing vulnerable perovskite and paves the way for the integration of monocrystalline perovskite optoelectronics.

9.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38612614

Revealing the interaction mechanisms between anticancer drugs and target DNA molecules at the single-molecule level is a hot research topic in the interdisciplinary fields of biophysical chemistry and pharmaceutical engineering. When fluorescence imaging technology is employed to carry out this kind of research, a knotty problem due to fluorescent dye molecules and drug molecules acting on a DNA molecule simultaneously is encountered. In this paper, based on self-made novel solid active substrates NpAA/(ZnO-ZnCl2)/AuNPs, we use a surface-enhanced Raman spectroscopy method, inverted fluorescence microscope technology, and a molecular docking method to investigate the action of the fluorescent dye YOYO-1 and the drug DOX on calf thymus DNA (ctDNA) molecules and the influencing effects and competitive relationships of YOYO-1 on the binding properties of the ctDNA-DOX complex. The interaction sites and modes of action between the YOYO-1 and the ctDNA-DOX complex are systematically examined, and the DOX with the ctDNA-YOYO-1 are compared, and the impact of YOYO-1 on the stability of the ctDNA-DOX complex and the competitive mechanism between DOX and YOYO-1 acting with DNA molecules are elucidated. This study has helpful experimental guidance and a theoretical foundation to expound the mechanism of interaction between drugs and biomolecules at the single-molecule level.


Benzoxazoles , Fluorescent Dyes , Metal Nanoparticles , Quinolinium Compounds , Gold , Molecular Docking Simulation , Spectrum Analysis, Raman , DNA
10.
Pediatr Surg Int ; 40(1): 113, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668784

PURPOSE: The incidence of post-transplant poral vein stenosis (PVS) is higher in pediatric liver transplantation, probably resulting from various portal vein (PV) reconstruction methods or other factors. METHODS: 332 patients less than 12 years old when receiving liver transplantation (LT) were enrolled in this research. Portal vein reconstruction methods include anastomosis to the left side of the recipient PV trunk (type 1, n = 170), to the recipient left and right PV branch patch (type 2, n = 79), using vein graft interposition (type 3, n = 32), or end-to-end PV anastomosis (type 4, n = 50). The incidence of PVS was analyzed in terms to different PV reconstruction methods and other possible risk factors. RESULTS: PVS occurred in 35 (10.5%) patients. Of the 32 patients using vein graft, 20 patients received a cryopreserved vein graft, 11 (55%) developed PVS, while the remaining 12 patients received a fresh iliac vein for PV interposition and none of them developed PVS. 9 patients whose liver donor was under 12 years old developed PVS, with an incidence of 18.8%. CONCLUSION: Cryopreserved vein graft interposition and a liver donor under 12 are independent risk factors for PVS in pediatric LT.


Liver Transplantation , Portal Vein , Postoperative Complications , Humans , Liver Transplantation/methods , Portal Vein/surgery , Risk Factors , Male , Female , Child , Child, Preschool , Case-Control Studies , Infant , Constriction, Pathologic , Postoperative Complications/epidemiology , Incidence , Retrospective Studies , Anastomosis, Surgical/methods , Vascular Diseases/etiology , Vascular Diseases/surgery
11.
Plant Physiol ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669310

The histone lysine (K) demethylase 4 (KDM4/JHDM3) subfamily of jumonji domain-containing demethylases (JMJs) has been implicated in various aspects of plant development. However, their involvement in regulating the ripening of fleshy fruits remains unclear. Here, we identified SlJMJ3, a member of the KDM4/JHDM3 family, as a H3K27me3 demethylase in tomato (Solanum lycopersicum) that plays an important role in fruit ripening regulation. Overexpression of SlJMJ3 led to accelerated fruit ripening, whereas loss-of-function of SlJMJ3 delayed this process. Furthermore, we determined that SlJMJ3 exerts its regulatory function by modulating the expression of multiple ripening-related genes involved in ethylene biosynthesis and response, carotenoid metabolism, cell wall modification, transcriptional control, and DNA methylation modification. SlJMJ3 bound directly to the promoters of ripening-related genes harboring the CTCTGYTY motif and activates their expression. Additionally, SlJMJ3 reduced the levels of H3K27me3 at its target genes, thereby up-regulating their expression. In summary, our findings highlight the role of SlJMJ3 in the regulation of fruit ripening in tomato. By removing the methyl group from trimethylated histone H3 lysine 27 at ripening-related genes, SlJMJ3 acts as an epigenetic regulator that orchestrates the complex molecular processes underlying fruit ripening.

12.
Cell Commun Signal ; 22(1): 224, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600588

BACKGROUND: Activation of VDR pathway was a promising anti-tumor therapy strategy. However, numerous clinical studies have demonstrated the effect of activating VDR is limited, which indicates that VDR plays a complex role in vivos. METHODS: We analyzed the TCGA database to examine the association between VDR expression and immune cell infiltration in pancreatic adenocarcinoma (PAAD). Western blot, ELISA, ChIP, and dual-luciferase reporter assays were performed to determine the mechanism of VDR regulating CCL20. Migration assay and immunofluorescence were used to investigate the role of CCL20 in M2 macrophage polarization and recruitment. We employed multiplexed immunohistochemical staining and mouse models to validate the correlation of VDR on macrophages infiltration in PAAD. Flow cytometry analysis of M2/M1 ratio in subcutaneous graft tumors. RESULTS: VDR is extensively expressed in PAAD, and patients with elevated VDR levels exhibited a significantly reduced overall survival. VDR expression in PAAD tissues was associated with increased M2 macrophages infiltration. PAAD cells overexpressing VDR promote macrophages polarization towards M2 phenotype and recruitment in vitro and vivo. Mechanistically, VDR binds to the CCL20 promoter and up-regulates its transcription. The effects of polarization and recruitment on macrophages can be rescued by blocking CCL20. Finally, the relationship between VDR and M2 macrophages infiltration was evaluated using clinical cohort and subcutaneous graft tumors. A positive correlation was demonstrated between VDR/CCL20/CD163 in PAAD tissues and mouse models. CONCLUSION: High expression of VDR in PAAD promotes M2 macrophage polarization and recruitment through the secretion of CCL20, which activates tumor progression. This finding suggests that the combination of anti-macrophage therapy may improve the efficacy of VDR activation therapy in PAAD.


Adenocarcinoma , Chemokine CCL20 , Pancreatic Neoplasms , Receptors, Calcitriol , Animals , Humans , Mice , Adenocarcinoma/pathology , Cell Line, Tumor , Chemokine CCL20/metabolism , Macrophages/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phenotype , Receptors, Calcitriol/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages
13.
Nano Lett ; 24(15): 4588-4594, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38587406

Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.


Heating , Magnetics , Swine , Animals , Cryopreservation , Ferrosoferric Oxide , Magnetic Fields
14.
Animals (Basel) ; 14(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672382

This experiment aimed to evaluate the effects of supplementing tributyrin (TB) on the meat quality characteristics of foreshank muscle of weaned lambs. A total of 30 healthy weaned Small-Tailed Han female lambs with body weights ranging from 23.4 to 31.6 kg were selected and randomly divided into five groups, and each group consisted of 6 lambs. The control group was fed a basic total mixed ration, while other groups were fed the same ration supplemented with 0.5, 1.0, 2.0, and 4.0 g/kg TB, respectively. The experiment lasted 75 d, including 15 d of adaptation. Foreshank muscle obtained at the same position from each lamb was used for chemical analysis and sensory evaluation. The results showed that supplementing TB increased the muscle contents of ether extract (p = 0.029), calcium (p = 0.030), phosphorus (p = 0.007), and intermuscular fat length (p = 0.022). Besides, TB increased the muscle pH (p = 0.001) and redness (p < 0.001) but reduced the lightness (p < 0.001), drip loss (p = 0.029), cooking loss (p < 0.001), shear force (p = 0.001), hardness (p < 0.001), cohesiveness (p < 0.001), springiness (p < 0.001), gumminess (p < 0.001), and chewiness (p < 0.001). In addition, TB increased the muscle content of inosine-5'-phosphate (p = 0.004). Most importantly, TB increased the muscle contents of essential amino acids (p < 0.001). Furthermore, TB increased the saturated fatty acids level in the muscle (p < 0.001) while decreasing the unsaturated fatty acids content (p < 0.001). In conclusion, supplementing TB could influence the meat quality of foreshank muscle of weaned lambs by modifying the amino acid and fatty acid levels.

15.
Polymers (Basel) ; 16(7)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38611230

The treatment of waste plastics has gradually become a hot topic in the current scientific community. In response to the needs for high-impact performance R-PP-based composites, carbon fiber (CF)-reinforced polyolefin elastomer (POE)/recycled polypropylene (R-PP) composite (CF/POE/R-PP) was prepared by the mechanical blending method, and its mechanical and thermal properties were systematically studied. It was found that the CF could effectively improve the bending and notch impact strength as well as enhance the thermal stability of POE/R-PP. Furthermore, a stable and dispersed composite interface formed by the combination of maleic anhydride-grafted polypropylene (PP-g-MAH) with the surface of CF and the fusion alkyl chains in R-PP and POE further enhanced the CF's reinforcing effect. As a result, the addition of 9 wt.% CF successfully improved the heat resistance of the composite material, and the residual carbon content increased by 97.84% after sintering. The composite toughening of POE and CF effectively improved the impact strength of the composite material, with a maximum increase of over 1000%. This study ultimately resulted in a high-impact-resistant composite material.

16.
J Nutr ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38642744

BACKGROUND: The causal nature of gut microbiota and cerebral small vessel disease (CSVD) is still obscure regardless of evidence supporting their observational correlations. OBJECTIVES: The primary objective of this research is to investigate the potentially pathogenic or protective causal impacts of specific gut microbiota on various neuroimaging subtypes of CSVD. METHODS: We obtained the latest summary-level genome-wide databases for gut microbiota and 9 CSVD traits. The univariable and multivariable Mendelian randomization (MR) studies were conducted to examine the possible causal link between exposure and outcome. Meanwhile, we conducted sensitivity analyses sequentially, containing the heterogeneity, pleiotropy, and leave-one-out analysis. Additionally, to clarify the potential bidirectional causality, the causality from CSVD traits to the identified gut microbiota was implemented through reverse MR analysis. RESULTS: The univariable MR analysis identified 22 genetically predicted bacterial abundances that were correlated with CSVD traits. Although conditioning on macronutrient dietary compositions, 2 suggestive relationships were retained using the multivariable MR analysis. Specifically, the class Negativicutes and order Selenomonadales exhibited a negative causal association with strictly lobar cerebral microbleeds, 1 neuroimaging trait of CSVD. There is insufficient evidence indicating the presence of heterogeneity and horizontal pleiotropy. Furthermore, the identified causal relationship was not driven by any single nucleotide polymorphism. The results of the reverse MR analysis did not reveal any statistically significant causality from CSVD traits to the identified gut microbiota. CONCLUSIONS: Our study indicated several suggestive causal effects from gut microbiota to different neuroimaging subtypes of CSVD. These findings provided a latent understanding of the pathogenesis of CSVD from the perspective of the gut-brain axis.

17.
J Dent ; 143: 104899, 2024 Apr.
Article En | MEDLINE | ID: mdl-38428719

OBJECTIVES: Demineralized bone matrix (DBM) is a well-established bone graft material widely accepted by dentists and the public for its favorable osteoconductivity and osteoinductive potential. This article aimed to provide a narrative review of the current therapeutic applications and limitations of DBM in maxillofacial bone defects. STUDY SELECTION, DATA, AND SOURCES: Randomized controlled trials, prospective or retrospective clinical studies, case series and reports, and systematic reviews. MEDLINE, PubMed, and Google Scholar were searched using keywords. CONCLUSIONS: Some evidence supported the therapeutic application of DBM in periodontal intrabony defects, maxillary sinus lifts, ridge preservation, ridge augmentation, alveolar cleft repair, orthognathic surgery, and other regional maxillofacial bone defects. However, the limitations of DBM should be considered when using it, including potential low immunogenicity, instability of osteoinductive potential, handling of the graft material, and patient acceptance. CLINICAL SIGNIFICANCE: With the increasing demand for the treatment of maxillofacial bone defects, DBM is likely to play a greater role as a promising bone graft material. Safe and effective combination treatment strategies and how to maintain a stable osteoinductive potential will be the future challenges of DBM research.


Bone Matrix , Bone Regeneration , Humans , Bone Matrix/transplantation , Prospective Studies , Retrospective Studies , Treatment Outcome , Bone Transplantation
18.
Ecotoxicol Environ Saf ; 274: 116234, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38503107

BACKGROUND: Studies have shown that short- and long-term exposure to particulate matter (PM) can increase the risk of asthma morbidity and mortality. However, the effect of medium-term exposure remains unknown. We aim to examine the effect of medium-term exposure to size-fractioned PM on asthma exacerbations among asthmatics with poor medication adherence. METHODS: We conducted a longitudinal study in China based on the National Mobile Asthma Management System Project that specifically and routinely followed asthma exacerbations in asthmatics with poor medication adherence from April 2017 to May 2019. High-resolution satellite remote-sensing data were used to estimate each participant's medium-term exposure (on average 90 days) to size-fractioned PM (PM1, PM2.5, and PM10) based on the residential address and the date of the follow-up when asthma exacerbations (e.g., hospitalizations and emergency room visits) occurred or the end of the follow-up. The Cox proportional hazards model was employed to examine the hazard ratio of asthma exacerbations associated with each PM after controlling for sex, age, BMI, education level, geographic region, and temperature. RESULTS: Modelling results revealed nonlinear exposure-response associations of asthma exacerbations with medium-term exposure to PM1, PM2.5, and PM10. Specifically, for emergency room visits, we found an increased hazard ratio for PM1 above 22.8 µg/m3 (1.060, 95 % CI: 1.025-1.096, per 1 µg/m3 increase), PM2.5 above 38.2 µg/m3 (1.032, 95 % CI: 1.010-1.054), and PM10 above 78.6 µg/m3 (1.019, 95 % CI: 1.006-1.032). For hospitalizations, we also found an increased hazard ratio for PM1 above 20.3 µg/m3 (1.055, 95 % CI: 1.001-1.111) and PM2.5 above 39.2 µg/m3 (1.038, 95 % CI: 1.003-1.074). Furthermore, the effects of PM were greater for a longer exposure window (90-180 days) and among participants with a high BMI. CONCLUSION: This study suggests that medium-term exposure to PM is associated with an increased risk of asthma exacerbations in asthmatics with poor medication adherence, with a higher risk from smaller PM.


Air Pollutants , Air Pollution , Asthma , Humans , Particulate Matter/toxicity , Longitudinal Studies , Environmental Exposure/analysis , Asthma/drug therapy , Asthma/epidemiology , Asthma/chemically induced , China/epidemiology , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis
19.
PLoS One ; 19(3): e0299226, 2024.
Article En | MEDLINE | ID: mdl-38502643

This paper presents a novel approach to addressing the challenges associated with energy storage capacity allocation in high-permeability wind and solar distribution networks. The proposed method is a two-phase distributed robust energy storage capacity allocation method, which aims to regulate the stochasticity and volatility of net energy output. Firstly, an energy storage capacity allocation model is established, which considers energy storage's investment and operation costs to minimize the total cost. Then, a two-stage distributed robust energy storage capacity allocation model is established with the confidence set of uncertainty probability distribution constrained by 1-norm and ∞-norm. Finally, a Column and Constraint Generation (C&CG) algorithm is used to solve the problem. The validity of the proposed energy storage capacity allocation model is confirmed by examining different wind and solar penetration levels. Furthermore, the model's superiority is demonstrated by comparing it with deterministic and robust models.


Solar Energy , Wind , Algorithms , Uncertainty , Physical Phenomena
20.
J Phys Chem A ; 128(13): 2643-2655, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38530707

Using reactive force field (ReaxFF) and molecular dynamics simulation, we investigate the combustion process of hydrogen-oxygen systems in initial thermal nonequilibrium states with different translational and rovibrational temperatures for oxygen. The system studied in this work contains 300 oxygen molecules and 700 hydrogen molecules with a density of 7 times the air density. For this system, the characteristic relaxation times of oxygen and hydrogen vibrational energies are 0.173 and 0.249 ns, respectively. 0.6% of hydrogen undergoes a chemical reaction with oxygen during the thermal nonequilibrium relaxation stage. For the distribution of translational energy and vibrational energy of oxygen in the thermal nonequilibrium state, the maximum mean error of the statistical distribution in the simulation and the Boltzmann distribution at temperature calculated from the average kinetic energy of molecules is about 2.25 × 10-5. At the same time, it was observed in the simulation that many-body interactions play a certain role in the combustion process. Furthermore, we compare the ignition time and temperature rise behavior of different combustion mechanisms and molecular dynamics simulations starting from the thermal equilibrium state. These results will provide meaningful references for the construction of thermal nonequilibrium combustion chemical reaction mechanisms.

...